
Soldering Iron Safety with the Portlet
Or basically using the Portlet as a timed outlet

Summary: This is a quick example to show how the Portlet can be used as a safety device to keep you
from accidentally leaving your soldering iron on. This same concept of putting a timer on an outlet can
be used in a lot of applications, but since you are interested in the kit, you are probably interested in
Soldering Irons. The code for programming the Arduino is pasted in Appendix A

Table of Contents
Overview ...2
Programming the Portlet..2
The Setup...5
Defining the outlet operation...6
Appendix A: Sample Arduino Code...7

Overview
The concept is very simple: You don't want to leave your soldering iron accidentally. So we program
the Portlet to only leave the iron on for an hour at a time before turning off the outlet.

Programming the Portlet

Before you start, it's best to get the Portlet all ready and programmed. The Portlet is based off the
popular Arduino platform and uses the Arduino IDE for programming. Here we give a brief example
of how to program the Arduino, so if you want to learn more you should head over to the excellent
Arduino home page at http://www.arduino.cc/

First off, plug your programming cable into the programming interface of the Portlet. The interface is
the six header pins coming off of the Arduino Pro Mini build into the device. There is an access port in
the covers on the right side of the Portlet. If you are using the Sparkfun 5V programming cable, the
black wire goes on top for the correct orientation.

http://www.arduino.cc/

Open up the Arduino IDE and copy and paste the attached into the IDE. The pictures below show the
Program using a different sketch, the Maintain Temp Sketch, but the process is the same.

Make sure you have the correct serial port selected for your interface and for the board choose the
“Arduino Pro or Pro Mini (5V, 16MHz) w/ATmega328”

The Setup

Here you see the example soldering iron plugged into the Portlet which is in turn plugged into the wall
outlet. Nice and simple.

Defining the outlet operation

If we are to graph this process, the basic operation profile of the outlet would look something like the
following. On the Y axis a 1 indicates the outlet is turned on and a 0 indicates it is turned off. On the
X axis, the timing can be totally up to you, the programmer.

Appendix A: Sample Arduino Code
/*

 Brief Outlet Shutoff Sketch for the Portlet

 Demonstrates the use a Portlet as a safety shutoff device

 */

// include the library code for the LCD:

#include <LiquidCrystal.h>

// initialize the library with the numbers of the interface pins for LCD control

LiquidCrystal lcd(11, 12, 7, 8, 9, 10);

// define the switches and outputs

const int button1 = 2;

const int button2 = 3;

//buttonThree and buttonFour are hooked to Analog

const int buttonThree = A2;

const int buttonFour = A3;

const int thermo1 = A0;

const int thermo2 = A1;

const int outlet1 = 6;

const int outlet2 = 5;

//the LCD backlight is used as feedback to the user

const int backlight = 13;

void setup() {

 // set up the LCD's number of columns and rows:

 lcd.begin(16, 2);

 //define buttons as inputs and outlets as outputs

 pinMode(button1, INPUT);

 pinMode(button2, INPUT);

 pinMode(outlet1, OUTPUT);

 pinMode(outlet2, OUTPUT);

 pinMode(backlight, OUTPUT);

 //enable serial for troubleshooting

 Serial.begin(9600);

}

void loop() {

 // prepare LCD

 lcd.clear();

 lcd.setCursor(0, 0);

 lcd.print("Press 1 ");

 lcd.setCursor(0, 1);

 lcd.print("to Start ");

 //make sure both outlets are off

 digitalWrite(outlet1, LOW);

 digitalWrite(outlet2, LOW);

 //turn the backlight on for ease of reading

 digitalWrite(backlight,HIGH);

 //do nothing loop until a button is pressed

 while(digitalRead(button1) == LOW);

 //turn outlet 1 on

 digitalWrite(outlet1, HIGH);

 //start the timer

 int time_in_minutes = 6;

 for(int x = 0; x < time_in_minutes; x++){

 //print number of minutes elapsed

 lcd.clear();

 lcd.home();

 lcd.print("Num min: ");

 lcd.print(x);

 lcd.print(" ");

 //pause for 1 minute

 delay(6000);

 //for fun, send the number of minutes elapsed over the serial

 Serial.println(x);

 }

}

	Overview
	Programming the Portlet
	The Setup
	Defining the outlet operation
	Appendix A: Sample Arduino Code

